Lesson Plan

Name of faculty:- Sh. Sahil (Theory and Practical)

Discipline:- Mechanical Engineering

Semester:- 3rd

Subject:- STRENGTH OF MATERIAL (SOM)

Lesson Plan Duration:- 15 weeks (from Sept.2024 to Dec.2024)

Work Load:- Lectures-3, Practicals-2

	THEORY		PRACTICAL	
WEEK	LECTUR E DAY	ΤΟΡΙΟ	PRACTICAL DAY	ΤΟΡΙϹ
1st	$\frac{1^{\text{st}}}{2^{\text{nd}}}$	Introduction to the subject Stresses and Strains:- Basic concept of load, stress and strain	1st	Significance of practical work and Preparation of file
	3 rd	Tensile, compressive and shear stresses Linear strain, Lateral strain, Shear strain	2 nd	Significance of practical work and Preparation of file
2nd	1 st	Volumetric strain, Stress-strain curve for ductile materials	1st	Tensile test on bars of Mild steel and Aluminium
	2^{nd}	Stress-strain curve for brittle materials,		
	3 rd	Nominal stress, Yield point, Ultimate stress and breaking stress	2^{nd}	Tensile test on bars of Mild steel and Aluminium
3rd	1 st	Percentage elongation, Proof stress and working stress, Factor of safety	1st	Bending tests on a steel bar or a wooden beam
	2 nd	Poisson's Ratio, Thermal stress and strain		
	3 rd	Longitudinal and circumferential stresses in seamless thin walled cylindrical shells.	2 nd	Bending tests on a steel bar or a wooden beam
4th	1 st	Introduction to Principal stresses	1st	Impact test on metals a) Izod test
	$\frac{2}{3^{rd}}$	Revision Resilience:- Strain Energy, Resilience, proof resilience and modulus of resilience	2 nd	Impact test on metals a) Izod test
5th	1 st	Strain energy due to direct stresses and Shear Stress	1st	Impact test on metals b) Charpy test
	2 nd	Stresses due to gradual, sudden and falling load		
	3 rd	Revision	2 nd	Impact test on metals b) Charpy test

	THEORY		PRACTICAL		
WEEK	LECTUR E DAY	ΤΟΡΙϹ	PRACTICAL DAY	TOPIC	
6th	1 st 2 nd 3 rd	1 st Sessional			
7th	1 st	Moment of Inertia : Concept of moment of inertia and second moment of area, Radius of gyration.	1st	Torsion test of solid specimen of circular section of different metals for determining modulus of rigidity	
	2^{nd}	Theorem of perpendicular axis and parallel axis (with derivation)			
	3 rd	Second moment of area of common geometrical sections : Rectangle, Triangle, Circle (without derivation)	2 nd	Torsion test of solid specimen of circular section of different metals for determining modulus of rigidity	
8th	1 st	Second moment of area for L,T and I section Section modulus	1st	To plot a graph between load and extension	
	3 rd	Bending Moment and Shearing Force: Concept of various types of beams and form of loading	2 nd	To plot a graph between load and extension	
9th	1 st	B.M. and S.F. Diagram for cantilever and simply supported beams with and without overhang subjected to concentrated and U.D.L	1st		
	2 nd	Bending stresses: Concept of Bending stresses, Theory of simple bending, Derivation of Bending Equation		File Checking	
	3 rd	Use of the equation $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$	2 nd		
10th	$\frac{1^{\text{st}}}{2^{\text{nd}}}$	Sessional 2 nd			
11th	1 st 2 nd	Concept of moment of resistance, Bending stress diagram Section modulus for rectangular,	1st	To determine the stiffness of a helical spring.	
	3 rd	Calculation of maximum bending stress in beams of rectangular, circular, and T section	2 nd	To determine the stiffness of a helical spring.	
12th	1 st	Columns: Concept of column, modes of failure, Buckling load, crushing load	1st	Hardness test on different metals	

		THEORY	PRACTICAL		
WEEK	LECTUR E DAY	ΤΟΡΙϹ	PRACTICAL DAY	TOPIC	
	2^{nd}	Slenderness ratio, Effective length,			
		Factors effecting strength of a			
		column	1		
	3^{rd}	Strength of column by Euler	2^{nd}	Hardness test on different	
		Formula without derivation		metals	
13th	1^{st}	Torsion: Derivation of Torsion	1st		
		Equation, use of torsion equation			
		for circular shaft			
	2^{na}	Comparison between solid and			
		hollow shaft with regard to their		File Checking	
	ord	strength and weight	and	-	
	3 ^{ru}	Power transmitted by shaft,	2 nd		
		Concept of mean and maximum			
4.4.3	a st	torque	4		
14th	1	Springs: Closed coil helical springs	İst		
		subjected to axial load and			
		calculation of: Stress deformation			
		- Stiffness and angle of twist			
	and	Strain anarou and proof		Internal Viva Vaca	
	2	- Strain energy and proof resilience.		internal viva voce	
	3 rd	Determination of number of plates	2 nd	1	
		of laminated spring (semi elliptical			
		type only)			
15th	1 st				
	2^{nd}		Sessional 3 rd		
	3 rd				